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Table VI 
Crossover uH Values from N 7  to N1 Coordination" 

adenosine inosine guanosine 
CH3Hgt 4.3 5.6 
dienPd2+ 1.5 6.1 
Ni2+ -2.1 7.1 7.8 
cu2+ 2.3 6.1 6.9 
Zn2+ 2.7 6.7 7.5 

"Reprinted with permission from: Kim, S. H.; Martin, R. B. 
Znorg. Chim. Acta 1984, 91, 19. Copyright 1984, Elsevier. 
*Calculated in ref 4 from results of Simpson, R. B. J .  Am. Chem. 
Soc. 1964, 86, 2059. 

>3. A t  pH >4.5 the [Nl]/[N7] molar ratio for adeno- 
sine is given by the antilog of the values in Table V. 

Conclusions 
The strong log stability constant vs. pKa correlations 

provide the vehicle for estimating metal ion stability 
constants at nucleic base sites of established pKa. The 
results for the N1 to N7 binding ratio in purine nu- 

cleosides are summarized in Tables V and VI. For 
adenosine Table V shows that the N1 to N7 binding 
ratio is 320 for the proton, 3 for Ni2+, 2.5 for Cu2+, and 
1.0 for Zn2+. Thus Zn2+ is distributed equally between 
the adenosine N1 and N7 sites in neutral solutions. 

N7 coordination in purine nucleosides predominates 
a t  low pH and gives way to favored N1 coordination at 
higher pH. Table VI shows for the three aqueous metal 
ions that the crossover pH for N7 to N1 coordination 
occurs from pH 2.1 to 2.7 for adenosine, pH 6.1 to  7.1 
for inosine, and pH 6.9 to 7.8 for guanosine. Thus for 
all three purine nucleosides aqueous metal ion binding 
at both the N7 and N1 sites is important in neutral 
solutions. 

The conclusions should be applicable for metal ion 
interactions to nucleic bases in single-stranded poly- 
nucleotides. For double-stranded helices, N3 of pyri- 
midines and N1 of purines are blocked by specific base 
pairing, paving the way for relatively greater N7 in- 
teractions with metal ions. 
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Roughly half of the American chemical industry is 
involved with polymers, and the study of polymers is 
obviously relevant to the understanding of a variety of 
biological systems. Theories of polymer properties in 
solution and the melt pose complicated mathematical 
problems because polymers have long-range cooperative 
interactions of both intramolecular and intermolecular 
character. Whereas these problems were untractable 
for many years, new theoretical developments now en- 
able the approximate description of wide variety of 
large-scale polymer properties in a manner which can 
be tested by experiment. 

An important aspect of the practical utilization of 
polymers and the understanding of their properties 
centers upon the determination of their physical prop- 
erties in the limit of infinite dilution. No complete 
description of more concentrated solutions is possible 
until this foundation is laid. Experimental methods of 
polymer characterization include light scattering, os- 
mometry, sedimentation, viscometry, etc. When the 
polymer concentration c approaches zero, osmometry 
provides a determination' of the molecular weight M 
of the polymer, while small-angle light scattering yields 
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Chemistry award. Freed's current research, in addltbn to the statistical me- 
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the polymers' radius of gyration RG. The limiting slope 
of light-scattering intensity vs. c in the zero-angle limit 
gives the polymer second virial coefficient' A2 as a 
measure of the effective volume that a polymer excludes 
to others. The translational diffusion coefficient D is 
written for c - 0 using Stokes' and Einstein's laws2 in 
terms of a hydrodynamic radius' RH as D = kT/6?rr],,RH, 
where Tis  the absolute temperature, k is Boltzmann's 
constant, and to is the solvent viscosity. If r]  is the 
viscosity of the polymer solution, the intrinsic viscosity 
[ r ] ]  = limc4 (11 - r]o)/cr]o gives another estimate of the 
volume occupied by a single polymer chain.' 

All of these large-scale measurable properties of 
polymers provide different measures of the overall size 
and shape of the polymer. They are frequently ob- 
served to vary with polymer molecular weight with a 
power law form KMb, where the proportionality factors 
K and the exponents b are dependent on polymer, 
solvent, and temperature. It is the goal of a compre- 
hensive theory to explain this variation of K and b with 
system and temperature over the full experimentally 
accessible range. 

Theoretical Models 
For the description of large-scale polymer properties 

like RG, A,, D, and [TI, it suffices to employ apparently 
simple models,*,3 which capture the essential large 

(1) Yamakawa, H. "Modern Theory of Polymer Solutions"; Harper 
and Row: New York, 1971 and references therein. 

(2) Stokes, G. G. Trans. Cambridge Philos. SOC. 1851,9,8. Einstein, 
A. Ann. Phys. (Leipzig) 1906,19,289; 1911,34, 591. 

(3) Rouse, P. E., Jr. J. Chem. Phys. 1953, 21, 1272. Zimm, B. H. J .  
Chem. Phys. 1956,24, 269. 

k3 1985 American Chemical Sncietv 
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length scale characteristics of long chainlike molecules, 
where many of the microscopic details of the polymers 
become irrelevant. For instance, one widely used 
polymer model treats the chain as having the configu- 
ration of a random walk with effective monomer units 
sequentially numbered 0, 1, ..., n at the spatial positions 
ro, rl, ..., rn. Obviously no two monomers on the chain 
can occupy the same space, so even the simple random 
walk model must be amended to contain volume ex- 
clusion effects. This polymer excluded volume effect 
introduces the essential mathematical complexity into 
the description of polymer properties. 

Theories of the effects of polymer excluded volume 
have utilized the simple "two-parameter" model' in 
which the bonds between effective units rj - rj-' have 
a Gaussian length distribution with a rms value of 1. In 
addition, there is a repulsive contribution to the free 
energy when a pair of segments occupies the same 
position in space.4 Hence, the dimensionless (free) 
energy associated with a chain conformation (rk) is taken 
as 

with Po the volume excluded by an effective segment 
due to the presence of another and d the dimensionality 
of space, three in ordinary space and two for polymers 
confined to a surface. The first term on the right-hand 
side in (1) represents the entropy of the polymer chain 
conformation associated with the many degrees of 
freedom of internal motion in the coarse grained ef- 
fective uni t s . l~~-~  Equation (1) implicitly assumes the 
presence of a large number of these units. Retention 
of only this term yields the simple Gaussian chain 
model of polymers at the theta temperature 8, a model 
for which the large length scale polymer properties are 
readily calculated. The entropic or elastic energy ac- 
counts in the model for the connectivity of the polymer 
chain. 

The second term on the right hand side of (1) con- 
verts the simple Gaussian chain model into a true 
many-body problem since this second term contains a 
pairwise sum over all effective monomer units. De- 
scribing polymer properties with the full energy (1) has 
been termed the polymer excluded volume problem. 
The analysis uses standard statistical mechanic~ '*~,~ 
where the probability density for obtaining the chain 
conformation (rk( is proportional to Boltzmann weight 
e-H. Note that (1) contains the temperature- and sol- 
vent-dependent parameters 1 and Po. For nonzero 
concentrations there is a term like (1) for each polymer 
with excluded volume interactions between all pairs of 
monomers on different polymers. 

We emphasize that (1) does not provide a true mi- 
croscopic description of the polymer structure and in- 
teractions on a monomer length scale. Hence, when we 
derive universal large-scale laws for polymer properties, 
their explicit dependence on the separate model pa- 
rameters l ,  n, and Po are combined together into phe- 
nomenological constants in order to describe real 
polymers. This combination is possible because the 
same form of the universal laws would emerge from 

(4) Flory, P. J. "Principles of Polymer Chemistry"; Cornel1 Press: 

(5) Freed, K. F. Adu. Chem. Phys. 1972,22, 1. 
Ithaca, NY, 1953. 

more realistic models with the resultant phenomeno- 
logical constants of the universal laws being different 
functions of the parameters of this new model. Thus, 
the computed dependence of the parameters on I ,  n, 
and Po is not to  be taken literally as if the model (1) 
is a complete representation of reality. Experience has 
shown that (1) suffices to determine the universal laws 
for uncharged polymers over a wide range of experi- 
mental conditions. A fuller understanding of the the- 
oretical questions posed by these universal laws emerges 
from a brief summary of some of the previous theo- 
retical analyses. 

Given the simple Gaussian chain description of the 
long random walk polymer and the complexity intro- 
duced by the excluded volume, it is natural to take the 
Gaussian chain as a zeroth order approximation and to 
compute polymer properties by expansion in powers of 
Po. This produces the excluded volume perturbation 
theory' which is predicated on the hope that Po is 
somehow small enough. Very near 8, this theory to 
order Po with Po treated empirically is quite successful 
in explaining experimental data,' but it quickly breaks 
down away from 8 for the following reason: Excluded 
volume perturbation theory is readily shown1 to be an 
expansion in the dimensionless quantity Pol-dnf/2 with 
e = 4 - d. Hence, for high-molecular-weight polymers, 
n is large, and the expansion is in a large parameter as 
long as Pol" > n-f/2 and d < 4. Hence, the perturbation 
theory alone is of little use except for T N 8 where the 
empirical Po vanishes. 

Flory has introduced a uniform expansion model4 
based upon the zeroth-order approximation Ho = (d /  
212a2)Cnj=,lrj - rj-'I2, containing the expansion factor 
a which is determined variationally by minimizing the 
approximate free energy of the polymer chain. The 
uniform expansion model is very successful in describ- 
ing the qualitative swelling of the polymer's dimensions 
as the strength of excluded volume increases, but it is 
deficient in a number of respects arising presumably 
from an inadequate representation of fluctuations. 
Flory's approach and the self-consistent methods gen- 
eralizing it"' are variational treatments for the pairwise 
interacting monomers much in the same spirit as self- 
consistent field methods for molecular electronic 
structure. 

Much information concerning polymer excluded 
volume has been gained from computer studies&" of 
self-avoiding or interacting random walks on lattices 
using enumerationg and Monte Carlo methods.lOJ' 
These calculations suffice to show that the asymptotic 
variation of, say, RG with n for n -+ a is of the form RG2 
a n2" with 2v very close to the Flory value6,' of 6 / ( d  + 
2) for 1 I d I 4 and 2v = 1 for d 1 4 independent of 
lattice details. Lattice computations are useful because 
they must lead to the same universal large-scale laws 
as models like (l), so these computer studies yield im- 
portant data on the polymer properties to aid in the 

(6) Edwards, S. F. Proc. Phys. Soc., London 1965,85,613. Edwards, 
S. F.; Singh, P. J.  Chem. SOC., Faraday Trans. 2 1979, 75, 1001. Mu- 
thukumar, M.; Edwards, S. F. J .  Chem. Phys. 1982, 76, 2720. 

(7) Kosmas, M. K.; Freed, K. F. J. Chem. Phys. 1978,68, 4878. 
(8) (a) Domb, C. Adu. Chem. Phys. 1969, 15, 229. (b) Barrett, A.; 

Domb, C. Proc. R. SOC. London, Ser. A 1981, 376, 361. (c) Domb, C.; 
Barrett, A. Polymer 1976, 17, 179. 

(9) Tanaka, G. Macromolecules 1980, 13, 1513. 
(10) Teramoto, E.; Kurata, M.; Chujo, R.; Sujuki, C.; Tani, K.; Kaji- 

kawa, T. J .  Phys. SOC. Jpn. 1955,10, 953. 
(11) Wall, F. T.; Erpenbeck, J. J.  Chem. Phys. 1959, 30, 634. 
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construction of full analytical theories. Lattice and 
computer-assisted analytical methodsl2 can also gen- 
erate higher order terms in the perturbation expansion 
which provide additional useful checks on analytical 
calculations. 

Early renormalization group (RG) approache~,'~-l~ 
designed originally for critical phenomena in magnets, 
fluids, etc., and heuristic scaling t h e ~ r i e s l ~ ~ J ~  of polymer 
excluded volume have been adopted to describe poly- 
mer properties only in the asymptotic scaling limit 
where polymer properties have power law forms like RG 
0: Nu with exponents like v having universal, polymer, 
solvent, and temperature independent values. These 
first RG methods are couched in the obscure termi- 
nology of magnets and field theory and are deficient 
because they do not describe the properties of polymers 
in the experimentally important nonscaling limit where 
effective exponents vary with excluded volume. 

There are a wide variety of renormalization group 
approaches14-18~z0~z1 which appear on the surface to be 
quite different but which produce the same final results 
because identical physical considerations are effectively 
incorporated. Wilson stylezz RG explicitly introduces 
a coarse graining t ransformat i~n '~ ,~~ with subsequent 
scaling to define the RG transformation. A more pow- 
erful set of techniques for polymer excluded volume is 
provided by the direct RG methods14~16~z0~z3~z4 whose 
origins lie in the field theory renormalization methods 
originated by Gell-Mann and Lowz5 for quantum elec- 
trodynamics. 

Our recent progressz0~z1~z3~z4~2631 with describing 
polymer excluded volume involves applying the latter 
RG m e t h 0 d s ~ ~ 8 ~  solely in polymer language to the 
traditional polymer model (1) without analogies to 
magnets or field theory. This chain conformation space 
RG theory has been designed for polymers to address 
the important problem of treating the full excluded 
volume, temperature, and molecular weight dependence 
of large-scale polymer properties. 

Here we provide a brief heuristic description of the 
chain conformation renormalization group treatment 

(12) Muthukumar, M.; Nickel, B. G. J. Chem. Phys. 1984,80, 5839. 
(13) (a) de Gennes, P. G. Phys. Lett. A 1972, 36, 339. (b) "Scaling 

(14) des Cloizeaux, J. J. Phys. (Orsay, Fr.) 1975,36,281; 1981,42,635. 
(15) Schfder, L.; Witten, T. A., Jr. J. Chem. Phys. 1977,66,2121; 1981, 

74, 2582. 
(16) Burch, D. J.; Moore, M. A. J. Phys. A: Math. Gen. 1976,9,435. 

Lawrie, I. D. J. Phys. A: Math Gen. 1976, 9, 961. Elderfield, D. J. J. 
Phys. A 1978,11, 2483. 

(17) de Gennes, P. G. Riu. Nuouo Cimento SOC. Ital. Fis. 1977, 7,363. 
Gabay, M.; Garel, T. J. Phys. (Orsay, Fr.) 1978,39, L123. Al-Noaimi, G. 
F.; Martinez-Mekler, G. C.; Velasco, R. M. J. Chen. Phys. 1983.78.3316. 

Concepts in Polymer Physics"; Cornell Press: Ithaca, NY, 1979. 

(18) Familv. F.: Gould. H. J. Chem. Phvs. 1984. 80. 3892. 
(19) See Aspendix A 'Kosmas, M. K.; h e e d ,  K. F: J.  Chem. Phys. 

1978. 68. 4878. 
(20) 0ono;Y.; Ohta, T.; Freed, K. F. J. Chem. Phys. 1981, 74, 6458. 
(21) Oono, Y.; Freed, K. F. J. Chem. Phys. 1981, 75,993. 
(22) Wilson, K. G.; Kogut, J. Phys. Rep. C 1974,12, 75. 
(23) Kholodenko, A. L.; Freed, K. F. J. Chem. Phys. 1984, 80, 900. 
(24) Kholodenko, A. L.; Freed, K. F. J. Chem. Phys. 1983, 78,7390. 
(25) Gell-Mann, M.; Low, F. E. Phys. Reo. 1954, 95, 1300. 
(26) Amit, D. J. "Field Theory, The Renormalization Group and 

Critical Phenomena"; McGraw-Hill: New York, 1978. 
(27) Ohta, T.; Oono, Y. Phys. Lett. A 1982,89, 460. Freed, K. F. J.  

Chem. Phys. 1983, 79,6357. 
(28) Oono, Y.; Freed, K. F. J. Chem. Phys. 1981, 75, 1009. 
(29) Kholodenko, A. L.; Freed, K. F. J.  Phys. A .  1984,17, L55. 
(30) Douglas, J. F.; Freed, K. F. Macromolecules 1984, 17, 1854. 
(31) Douglas, J. F.; Freed, K. F. Macromolecules 1983,15,1800; 1984, 

(32) 'tHooft, G.; Veltman, M. Nucl. Phys. B 1972, 44, 189. 
(33) b o n d ,  P. "Field Theory. A Modern Primer"; Benjamin/Cum- 

17, 2344. 

mings: Reading, MA, 1981. 

of polymer excluded volume solely within the frame- 
work of the model (1). Our aim is to outline the basic 
physical concepts underlying the theory, its achieve- 
menta and even its difficulties. An emphasis is placed 
on the so-called crossover regions where the effective 
exponents b in the molecular weight dependence Mb are 
functions of polymer, solvent, and T. The full theo- 
ry20~24~26 as well as extensive comparisons with experi- 
ment3' are contained in a series of papers which de- 
scribe the computational schemes. 

Motivation for the Renormalization Group 
A continuous polymer chain limit5 is utilized in which 

the effective units in (1) may be viewed as the discrete 
representation of the continuous chain conformation 
r(T) with T measuring the "distance" along the chain 0 
I T I No = nol and rj = rG1) being the discrete model. 
It is also convenient to use a set of variables C ( T )  = 
(d/Z)1/2r(T) such that d and 1 do not explicitly appear 
in the configurational Hamiltonian 3f which now be- 
comes20 

17 - 7'1 2 a 

where uo = pol-z( l /d)d/z  is the bare coupling constant, 
and a is a cut-off to remove self-excluded volume in- 
teractions. Proceeding from (1) to the continuum limit 
( 2 )  produces identical results as in older treatments1 
where sums over discrete bead indices are converted 
into integrals a t  the end of the calculation. The in- 
troduction of (2), however, from the outset results in 
the appearance of functional integrals whose use is 
becoming more widespread in various areas of theo- 
retical chemi~try.~ The discussion below does not em- 
ploy or assume any knowledge of methods of functional 
integration. 

Perturbation expansions of polymer properties in 
powers of uo are expansions in the dimensionless pa- 
rameter z = ( d / 2 7 r 1 2 ) d / 2 P ~ ~ ~ 2  as noted above.lVz0 Hence, 
these expansions would appear to be of little use for E 

> 0 (i.e,, d < 4) when Po or uo # 0 and no - m. How- 
ever, this perturbation approach can be made con- 
trollable= by letting d become a continuous variable and 
by using a double expansion in powers of uo and t. This 
€-expansion method yields, for instance, 

no'/2 = 1 + (€/2)  In no + (t2/8)(ln no)2 + ..., (3) 

so that when no is large, we choose E small in order that 
In no is a small expansion parameter. Hence, the 

€-expansion makes perturbation theory an acceptable 
method of computation, but it remains to show how 
perturbation expansions in 3.99 dimensions can usefully 
be applied to three-dimensional real-world polymers. 

The RG method accomplishes the analytic continu- 
ation from 3.99 to 3 dimensions by focusing on the 
analytic structure of the dependence of large-scale 
polymer properties on the chain length and excluded 
volume. For instance, if the renormalization group 
theory predicts a power law dependence a nox under 
certain circumstances, and if the €-expansion method 
yields A + €B In no + O(t2), then the only consistent 
analytic continuation is AnoCBIA + O(t2). The RG me- 
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thod which we employ describes the important and 
theoretically more difficult polymer properties between 
the Gaussian chain and n - m scaling limits. The 
t-expansion methods for polymer excluded volume, 
actually an expansion in t/8, yield only asymptotic 
expansions for the asymptotic n - a power law expo- 
nents. Truncation of the expansions at second order 
[0(e2)] yields very accurate values, and we take the 
pragmatic approach of evaluating the exponents 
through second order24$30*31 (even in the crossover do- 
main) as providing good agreement with experiment. 
Summations have been made of the dominant terms for 
v through infinite order in t, and the resultsN agree well 
with truncation to c2. This infinite order treatment is 
not available in the crossover region where the fortu- 
nately accurate second-order theory is applied by us 
instead. 

Another ingredient in RG theory involves an addi- 
tional type of averaging (coarse graining) beyond that 
implicit in the model (1) or (2) by virtue of the use of 
effective units containing several monomers. The model 
(2) of a continuous random walk with 6 function ex- 
cluded volume departs considerably from the properties 
of real polymers, so model predictions must contain 
certain microscopic details which are irrelevant to the 
long-wavelength behavior. Coarse graining involves 
averaging over a certain length scale and, therefore, 
eliminating some information, albeit irrelevant for our 
purposes, from the original model. The combination 
of scaling (through dimensional analysis) and coarse 
graining provides a transformation, the RG transfor- 
mation, between the original polymer and physically 
identical scaled coarse grained ones having different 
chain lengths and interaction strengths. Nevertheless, 
because of the lack of a characteristic length scale in 
the polymer excluded volume problem, when all these 
polymers are rescaled, they provide identical long- 
wavelength polymer properties as the original polymer. 
Because information is lost in the coarse graining, the 
RG is a semigroup as the transformation proceeds only 
in one direction, namely, in the direction of increased 
coarse graining.21 However, the desired long-wavelength 
properties are unaffected by this transformation pro- 
vided the coarse graining scale is small compared to 
polymer sizes. 

The next section shows how the RG provides gener- 
alized and simple scaling laws and explains the physical 
motivation for the RG. Less mathematically inclined 
readers might skip to a discussion of the results and 
comparison with experiment. 

Chain Conformation Space Renormalization 
Group 

The probability density for the chain conformation 
C ( T )  is given by e-H. Long-wavelength observables are 
obtained as averages with this weight over all possible 
chain conformations c(T). Dimensional analysis of (2) 
shows that if the dimensions of T are defined as C, then 
those of No and a are the same. This is written as [ T I  
= [No] = [a] = C. Likewise, it follows that [c] = C1/2 
and [uo] = (Y2 in the units defined by the use of C ( T )  

as the conformation variable. It is convenient therefore 
to utilize the dimensionless variable uo = u & ~ / ~ ,  where 
L is the phenomenological coarse graining length scale. 

(34) LeGuillou, J.; Zinn-Justin, J. Phys. Rev. Lett. 1977, 39, 95. 

Consider a wide variety of polymer models of dif- 
fering microscopic details which lead to the same 
universal long-wavelength laws. The models differ in 
their chain lengths Ni. All Ni must be proportional to 
the molecular weight of the real polymer, so the Ni must 
be proportional to each other. Hence, No of our model 
(2) is proportional to the real polymer chain length N 
= ZNN0, where 2, is dimensionless and independent 
of N .  Within the model (2) 2, may depend only on uo 
and a/L .  

Interactions on a coarse grained length scale L may 
involve a number of correlated binary interactions be- 
tween effective units, so these coarse grained interac- 
tions are represented by the parameter u which is a 
function of uo and which is summarized through the 
relation u = Z,-’(u,a/L)uo with the dimensionless 2, 
independent of N. This relation enables us to also write 
2, = ZN(U,U/L). The parameters u and L become part 
of our final phenomenological variables and are de- 
pendent on polymer, solvent, and temperature. 

Let GB(R,No,uo,a) represent the fixed end-to-end- 
vector partition function obtained by integrating e-H 
over all chain conformations subject to the constraint 
that the ends are separated by R. The subscript B 
designates “bare” quantities evaluated from H of (2). 
Varying polymer models from that of (2) in the same 
universality class would yield differing GB, but when 
normalized they all must produce the same long- 
wavelength end-vector probability distribution. Con- 
sequently, GB(R,No,uo,a) can differ in the large scale 
limit from the real polymer quantity, the 
“renormalized” G(R,N,u,L), by an overall constant, and 
this is expressed t h r o ~ g h ~ ~ p ~ ~ p ~ ~  

G(R&,u,L) = z,-l(u,a/~)G~(R,No,~o,a) (4) 

A similar relation must apply for other long-wavelength 
properties P, involving P, Ps, and the renormalization 
constant 2, Calculated properties are general functions 
of N ,  u, and L which yield power law scaling limits only 
for certain ranges of these parameters. Outside these 
ranges, in the crossover domain, we term the full de- 
pendence, e.g., for G(R,N,u,L), on molecular weight and 
excluded volume as generalized scaling laws. 

Bare (unrenormalized) quantities calculated from H 
of (2) are obviously independent of the subsequent 
coarse graining length scale L since L does not appear 
in (2) as a parameter. Hence, we have the trivial 
statement that 

(5 )  

etc., for PB This apparently vacuous equation becomes 
important upon substitution of the relations N = ZNN0 
and uo = Z,u into (4) and use of the chain rule to 
provide the renormalization group equation 

an equation summarizing part of the analytic structure 
of the coarse grained G. In eq (6) we have the quantities 
YC = a In &/a In L ) N @ ~  a and YN = a In &/a In L)N ucha, 

and p(u) = du/d In E)No.uo,a is the Gell-Mann-tow 
function. 

The most general solution of (6) is verified by in- 
sertion to be 
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where F is not determined by (6) but must be computed 
from H as discussed below. Note that the left-hand side 
of (7) contains four independent variables, while the 
right side has only three, a great simplification. Fur- 
thermore, the choice of L larger than microscopic length 
scales can be shown to eliminate the necessity for in- 
clusion of additional parameters in more realistic 
models than (1) or (2). 

Dimensional analysis described at  the beginning of 
this section shows that if all lengths along the chain are 
scaled by the distance s, then G behaves as 

G(R,N,u,L) = S~/~G(I~S-~/~,NS-~,U,LS-~), s > 0 
(8) 

A combination of (7) and (8) and some algebra leads to 
the generalized scaling law for the normalized G as26 

P(R,N,u,L) = f(t',R/ (R2)1.1/2) (9) 

with f related to F of (7), and { a crossover scaling 
variable given by23 

t' = ( ~ T N / L ) ~ / ~  exp(-(t/2)JY[yN(x) - l]P-l(x) dx) 
(10) 

It is found that { ranges between zero for the Gaussian 
chain and infinity in the good solvent limit of fully 
developed excluded volume. ( R 2 )  is the mean square 
value obtained from SdRIRl2P(R,N,u;L), so (9) spe- 
cializes to the form postulated by scaling theories in the 
scaling limits ( - 0 or 03. In the important crossover 
domain t' + 0 or 03, eq (9) has a general dependence on 
(, a variation which is absent in simple scaling theories. 
Note that now the right-hand side of (9) only contains 
two independent variables, so the RG equation, scaling, 
and coarse graining with L/a  >> 1 considerably reduce 
the number of independent variables in the problem. 

The limit t' - 03 can be attained by (10) for N - 0 
and P(u) - 0. In general, simple scaling limits occur 
for the model (2) for the "fixed point" u* such that 
P(u*) vanishes. Then the term @/du in (6)  can be 
dropped, simplifying the final solutions like (7) and (9) 
and providing expressions for the exponents like Y in 
terms of yN(u*).  For instance, we find for ,t?(u*) = 0 
that (R2) which is proportional to RG2 is given by25 

(R2),* = (constant)1iPL-(2'1) (11) 

where 21, = [l-  y,&~*)]-l. Comparison of (11) with the 
observed behavior35 of RG2 in good solvents shows that 
L-1/2 is proportional to [ l -  ( 6 / T ) ]  in good  solvent^^^*^^ 
with 6 the theta temperature and the proportionality 
factor dependent on both polymer and solvent. Thus, 
L in good solvents is proportional to the size of a blob 
in the thermal blob thereby justifying the in- 

(35) Berry, G. C. J. Chem. Phys. 1966,44, 4550. 
(36) Farnoux, B.; Boub, F.; Cotton, J.; Daoud, M.; Jannink, G.; Nier- 

lich, M.; de Gennes, P. G. J. Phys. (Orsay, h..) 1978,39,77. Stockmayer, 
W. H.; Albrecht, A. C. J. Polym. Sei. 1958,32,215. Akcasu, A. 2.; Han, 
C. C. Macromolecules 1979, 12, 276. 

terpreting the meaning of L as a coarse graining length 
scale. 

This discussion of the RG so far is quite general and 
does not utilize t-expansions or perturbation theory. It 
is also readily extended to consider concentration-de- 
pendent polymer27 quantitites through the semidilute 
region until the concentration is sufficiently high that 
the model (2) no longer adequately describes effects due 
to polymer packing, occupied volume not represented 
by the model (2) of just entropy and excluded volume. 
When we desire calculations of the scaling functions like 
(9), the exponents like v, and the prefactors like the 
constant in (ll), then it is necessary to introduce a 
recipe for evaluating the renormalization constants ZN, 
Z,, ... and the scaling functions and to use approxima- 
tions like e e x p a n s i ~ n s . ~ ~ ~ ~ ~  

Methods for evaluating the renormalization constants 
are dictated also by considerations of universality which 
imply that large-scale polymer properties should be 
insensitive to the precise value of the cut-off parameter 
a in (2) in the long-wavelength limit a / L  - Of. Sin- 
gularities develop in the t-expansions of bare quantities 
when the formal limit a / L  - 0' is taken, and the re- 
normalization constants may uniquely be defined such 
that the perturbation expansion of renormalized 
quantities in u and E be free of these s i n g ~ l a r i t i e s . ~ ~ > ~ ~  
The details of the calculations are tedious as is the 
demonstration that all singularities can be consistently 
removed by this choice of renormalization constants.23 
The important point is to note that the RG uses the 
analytic continuation in d to expose the singularities 
in bare quantities. This feature along with a description 
of the dependence of large length scale properties on 
N ,  u, c, and d enables the analytic continuation from 
d = 3.99 to d = 3. 

Comparison with Experiment 
Our chain conformation space RG calculations con- 

tain the phenomenological parameters L and ( which, 
however, are not the natural phenomenological quan- 
tities employed by experimentalists. Most experimental 
datal (in d = 3) is represented in terms of a single 
phenomenological variable z ,  whereas the renormali- 
zation group theory contains two parameters L and ( 
(or their equivalent). It turns out that the full second 
order in t renormalization group calculations may ap- 
pro~imately3~3~l be represented for large and small ex- 
cluded volume in terms of a z-like variable = A W 2 [ 1  
- ( 6 / T ) ] ,  with A polymer and solvent dependent. 

For instance, consider properties Q for linear, ring, 
or regular star and comb polymers that scale naively 
as the pth power of the polymer radius. The Gaussian 
chain value for this property is written as Qo = GQ- 
(L??)op/2 with (S2)o = N1/6 the Gaussian chain squared 
radius of gyration RG2. Qo is assumed known as it is 
readily evaluated.' The perturbed Q scales naively as 
GQ(S2)J'12fQ(z) with fQ(0) = 1. An approximation to the 
second-order renormalization group calculation yields 
(d = 3)31 

(Q,(l + 32Z/3)?"'[1 + 0 ~ ( 3 2 E / 3 ) / ( 1  + 32%/3)] ,  

where v = 0.592 to order t2 and UQ is a pure number that 
depends on Q and that emerges solely from a first order 
(in t) calculation. Hence, eq (12) represents a rather 
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sophisticated resummation of the perturbation expan- 
sion in powers of 2. RG methods may be viewed as a 
mathematical approach to effect this resummation. 
Values of aQ may be obtained from RG calculations, but 
good approximations emerge from available d = 3 
first-order (in z )  perturbation  calculation^.^^ In addi- 
tion, limited experimental data for a small range in z 
can determine UQ empirically,3l and then (12) predicts 
Q over a wider range. While the full theory rigorously 
requires two phenomenological variables for 0.15 < Z 
<0.75, we find that (12a) consistently works well in this 
region, providing a theory with a single variable z for 
all Z. 

An accurate treatment of the important polymer 
second virial coefficient A2 requires a t  least a second- 
order description.”*3o It is convenient to represent A2 
in terms of the dimensionless interpenetration function 
\k@) defined by1 

A2 = (4a( S2))3/2(N,/21@)\k(Z) (13) 

with NA Avogadro’s number. The approximate sec- 
ond-order theory yields31 

Q ( Z )  = 0.207[(6.441Z)/(1 + 6.4412)][1 t 1.93Z/ 
(1 + 6.441Z)], Z < 0.15 { 0.269, f > 1.0 (14) 

where the small 1 equation is found to be a good ap- 
proximation for 0.15 < f <LO. 

Dynamical polymer properties like the diffusion 
constant D and the intrinsic viscosity [v] should, in 
principle, be evaluated by solving the appropriate dy- 
namical equations with excluded volume present.28 
While some progress has been made in treating the full 
equations37 or approximate models,38 these equations 
are rather complicated by virtue of the long-range na- 
ture of hydrodynamic disturbances.l The polymer is 
modeled as moving in a continuum fluid. Motion of a 
chain segment exerts a frictional force on the fluid. 
This force is propagated through the fluid by hydro- 
dynamics to other segments of the polymer, thereby 
altering their motion. These “hydrodynamic 
interactions” die off inversely with the distance from 
the source of friction, leading to long-range interactions 
in a system with long-range correlations.’ In order to 
simplify this problem, Kirkwood introduced’~~~ the 
“preaveraging approximation” of replacing the instan- 
taneous fluid velocity incident on a segment by the 
average velocity field much in the same spirit as Har- 
tree’s self-consistent field treatment of electrons in 
atoms. The preaveraging approximation for Gaussian 
chains is found to agree well with experiments in 8 
solvents apart from an overall multiplicative error of 
the order of 10% which appears to be independent of 
polymer, solvent, and molecular weight.’ To date, no 
success has been made with analytical theories in de- 
scribing corrections for the preaveraging approximation 
of Gaussian chains.40 

(37) Shiwa, Y.; Kawasaki, K. J.  Phys. C 1982, 15, 5345. 
(38) Oono, Y.; Kohmoto, M. J. Chem. Phys. 1983, 78,520; Phys. Reu. 

Lett. 1982,49, 1397. Oono, Y. J .  Chem. Phys. 1983, 79,4629. 
(39) Kirkwood, J. G.; Riseman, J. J.  Chem. Phys. 1948,16,565; 1960, 

18, 512. 
(40) Numerical simulations (Zimm, B. H. Macromolecules 1980, 13, 

592) give results for the nonpreaveraged Gaussian chain which are in 
agreement with experiment [for instance, Kawahara, K.; Norisuye, T.; 
Fujita, H. J. Chem. Phys. 1968,49, 4339.1 Cherayil, B. J.; Douglas, J. F.; 
Freed, K. F., to be published: argue that ternary interactions also con- 
tribute. 
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Figure 1. Comparison of experimental data of Miyaki and Fu- 
jita41 for the variation of as with i and the renormalization group 
predictions (RG) of (12), the Flory theory (F,0),’v4 the Yama- 
kawa-Tanka theory (YT),’ and the Domb-Barrett (DB)& equa- 
tion. The symbols @ designates data for polystyrene (PS) in 
benzene, 0 for PS in methyl ethyl ketone, and 0 for polyiso- 
butylene (PIB) in cyclohexane. Our i is taken as 0.906 times the 
empirical z value of Miyaki and F ~ j i t a . ~ l  
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Figure 2. Experimental data42 for log a: vs. log i taken from 
Miyaki and Fujita41 with the RG prediction added. The symbols 

and 0 for PIB in cyclohexane a t  25 “C, 0 for PIB in heptane 
at 25 “C, and 0 for PIB in isoamyl isovalerate. The RG curve 
uses a, = -0.274 and is a parameter-free prediction since the same 
2 is used as in Figure 1. 

When excluded volume is incorporated and treated 
within this preaveraging approximation, the intrinsic 
viscosity and diffusion constant can be represented as 
equilibrium averages scaling as the properties Q in (12), 
provided we invoke the “nondraining” limit’ wherein 
the fluid within the polymer coil remains entrapped 
inside it. Hence, we investigate this simplest approach 
to the excluded volume dependence of polymer dy- 
namics by utilizing the preaveraging approximation and 
by only correcting the prefactors Qo for the inadequacies 
of this approximation for Gaussian chains. This ap- 
proach is pursued because of its relative simplicity 
compared to an assault on the full dynamical equations, 
but even if successful, the latter must be studied to 
understand the approximations more thoroughly. 

Figure 1 presents data of Miyaki and Fujita41 ap2 
(S2)/ ( S 2 ) o  for various polymer solvent systems vs. an 
empirical z parameter which is found to be proportional 
to M1/2[1 - ( e / T ) ] .  Their data are compared with the 
renormalization group prediction (12) by adjusting a 

(41) Miyaki, Y.; Fujita, H. Macromolecules 1981, 14, 742. 
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Figure 3. Comparison of theories and experiment for variation 
of with a$. The data in the figure is taken from Yamakawa' 
with the parameter-free RG predictions added. Data poinb from 
Norisuye et al.'6 are 0 for polychloroprene (PC) in CC1, at 25 "C, 
6 for PC in n-butyl acetate at 25 "C, and Q) for PC in trans-decalin 
at various temperatures. Similar data36146947 and fits are available 
for PIB, PS, and poly@-methylstyrene) (PPMS) in various 
solvents. The curves (1)-(3) represent older theories as reviewed 
by Yamakawa.' 

single overall proportionality factor between their z 
parameter and i in (12). Also plotted are the Domb- 
Barrett (DB)7c equation, an interpolation formula based 
on lattice calculations, the original Flory theory (F,0),1,4 
and the Yamakawa-Tanaka (YT) theory.' 

Miyaki and Fujita41 have also studied the intrinsic 
viscosity [a]  as a function of their z parameter using the 
same z variable as in Figure 1. Hence, the comparison 
between theory and e ~ p e r i m e n t ~ ~  for [a ]  has no ad- 
justable parameters. This comparison is presented in 
Figure 2 where the RG predictions are the only theo- 
retical ones available over the whole range of excluded 
volume, i.e., of i. Some polymer-solvent dependence 
is apparent for larger i in the good solvent regime. An 
approximate treatment43 shows that this dependence 
is likely a result of the breakdown of the nondraining 
approximation inherent in the predicted curve. Thus, 
as suggested by Berry,u the fluid begins to flow through 
the polymer coil as the chain swells. The tendency 
toward draining in good solvents is quite polymer de- 
pendent43 and deserves further theoretical and exper- 
imental study. 

Polymer scientists consider various universal ratios 
of polymer properties such that the power law portions 
cancel and only the prefactor part remains. One ex- 
ample is the penetration function \k of (13). Equation 
(14) for \k does not have the large i power law behavior 
of (12), so \k approaches a constant asymptotic value 
P* as i - a. Figure 3 presents a comparison of the RG 
theory, some older theories described by Yamakawa,l 
and the experimental data of Norisuye et a1.& for P of 
polychloroprene in various solvents. Some of the older 
theories1 are incapable of predicting the constant as- 
ymptote for large a,$, while the RG theory gives a good 
fit to this and similar data by other ~ o r k e r s . ~ * ~ , ~ ~  Note 

(42) Fox, T., Jr.; Flory, P. J. J. Phys. Colloid Chem. 1949, 53, 197. 
Mataumoto, T.; Nishioka, N.; Fujita, H. J. Polym. Sci. 1972, 10, 23. 

(43) Douglas, J. F.; Freed, K. F. Macromolecules 1984, 17, 2354. 
(44) Berry, G.  C. J. Chem. Phys. 1967,46, 1338. 
(45) Norisuye, T.; Kawahara, K.; Teramoto, A,; Fujita, H. J. Chem. 

Phys. 1968, 49, 4330. Kawahara, K.; Norisuye, T.; Fujita, H. J .  Chem. 
Phys. 1968,49, 4339. 

(46) Tanaka, G.; Imai, S.; Yamakawa, H. J.  Chen. Phys. 1970, 52, 
2639. 

I I  I I I 1  

1.00 - - E 
' 0.50- 2 

\ 
s 

A 

0- 
I I I 

0 0.5 I .o 1.5 
2 

us2 -1 
Figure 4. Experimental data of Yamakawa,46 F~j i ta?~  and their 
respective co-workers for A#/ [v] vs. aSz2 - 1 compared with the 
parameter-free RG predictions. The data points are 0 for PC 
in CCl, at 25 "C, 6 for PC in n-butyl acetate at 25 OC, Q) for PC 
in trans-decalin, 0 for PPMS in toluene at 30 OC, for PPMS 
in dichloroethane at 30 "C, efor  PPMS in cyclohexane at 30 O C ,  

0 for PPMS in methyl ethyl ketone at 30 "C, 0 for PPMS in 
diethyl succinate at various temperatures. The theoretical cal- 
culations use the value of a0 = 2.51 X loz3 to correct Gaussian 
chain theory of [?lo for preaveraging," and the experimental data 
are reproduced from Yamakawa' with the RG predictions ap- 
pended. 

that because Figure 3 plots observables against each 
other, the RG predictions have no adjustable param- 
eters. 

Another universal ratio of interest is A , M / [ q ] ,  and 
data for this ratjo of Y a m a k a ~ a , ~ ~  F ~ j i t a , ~ ~  and their 
respective co-workers for various polymer-solvent sys- 
tems is presented in Figure 4 along with the parame- 
ter-free RG predictions. In both Figures 3 and 4 the 
Gaussian chain [?I0 is corrected for the preaveraging 
approximation,@ and this appears to be adequate in also 
describing the excluded volume dependence for non- 
draining polymers. 

The concentration dependence of equilibrium prop- 
erties can be treated by similar chain conformation 
space RG method27 for concentrations well into the 
semidilute region where the polymers are substantially 
mutually interpenetrating. This extension is conven- 
iently developed by directly incorporating Edwards's 
theory48 of the screening of excluded volume interac- 
tions in semidilute and concentrated solutions. Com- 
parison of predicted universal plots for the osmotic 
compressibility with experimental data49 shows excel- 
lent agreement, and further studies should be pursued. 
Technical problems still preclude the treatment of ex- 
cluded volume effects on polymer dynamics in semi- 
dilute solutions. Nevertheless our infinite dilution re- 
sults imply that draining effects will play a role here. 
Concluding Remarks 

This brief qualitative overview of some recent ad- 
vances in the chain conformation space (RG) descrip- 
tion of polymer excluded volume is designed, in part, 
to exhibit how large length scale polymer properties can 
be explained in terms of rather simple coarse grained 
models of polymer structure and dynamics. The RG 

(47) Mataumoto, T.; Nishioka, N.; Fujita, H. J.  Polym. Sci.  1972, I O ,  

(48) Edwards, S. F. Proc. Phys. SOC., London 1966,88, 265; J. Phys. 

(49) Wiltzius, P.; Haller, H. R.; Cannell, D. S.; Schaefer, D. W. Phys. 

23. 

A 1975, 10, 1670. 

Reu. Let t .  1983, 51, 1183. 
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theory is based on simple physical considerations that 
large length scale polymer properties must provide 
universal laws embodying the long chainlike character 
of polymers. These laws are represented in terms of 
scaling laws and their generalization to the important 
regions of intermediate excluded volume where the 
power law exponents are no longer universal constants. 
A motivation is provided for the eexpansion methods. 
The procedures for performing the eexpansion calcu- 
lations, evaluating the renormalization constants, and 
determining the generalized scaling functions are be- 
yond the scope of this article. However, we summarize 
some of the major results for the excluded volume de- 
pendence of a variety of equilibrium and dynamic 
properties of polymers at infinite dilution in terms of 
the same variables employed to analyze experimental 

data. The agreement between theory and experiment 
is very good especially for the crossover regime which 
is inaccessible to previous theories. It wil l  be of interest 
to extend these theoretical methods to more compli- 
cated polymer s y ~ t e m s ~ * ~ l  where there are too many 
relevant parameters for simple scaling13b arguments to 
provide an adequate zeroth order description. 

This work is supported, in part,  by NSF Grant DMR83-18560 
(polymers program) and is based primarily on the work with m y  
students and research associates Y. Oono, A. Kholodenko, and 
J. Douglas, without whom this research would not have been 
possible. 
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(51) Freed, K. F. J. Chem. Phys. 1983, 79, 3121. Nemirovsky, A.; 
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The concept of a normal mode plays an important 
part in vibrational theory whether for molecules, mu- 
sical instruments, or engineering structures. In mole- 
cules certain vibrational modes are localized. A familiar 
example is a bond vibration with a frequency so dis- 
parate from others in the molecule that it is effectively 
uncoupled from other degrees of freedom, such as the 
v1 C-H stretching mode of CHC13. The success of in- 
frared spectroscopy as an analytical tool depends on 
recognition of characteristic local bond or local group 
frequencies of this type. This Account deals with a 
more sophisticated form of localization that can develop 
in molecules for which the forms of coupled normal 
modes are determined by symmetry. The meaning of 
the term "local" has subtleties attached to it in this 
context, but there is no doubt that the concept has had 
signal success in the interpretation of multiquantum 
(overtone) absorption spectra, which are now becoming 
accessible by laser spectroscopy.lI2 

In order to explain this new kind of localization it is 
convenient to start from a classical model. Imagine a 
molecule containing two equivalent bonds with a com- 
mon frequency a,,. Oscillations in one of them will be 
resonantly excited by vibrations in the other and energy 
will flow between them at a frequency w1 governed by 
the strength of interbond coupling. The ensuing motion 
may then be decomposed into two concerted normal 
mode motions3 with frequencies wo f al. This normal 
mode picture depends however on the harmonic 
approximation-Namely that a. and a1 are independ- 
ent of energy. In a more realistic anharmonic model 

Mark S. ChiM was born in England in 1937. He received his B.A. (1959) 
and Ph.D. (1962) from Cambridge Unlversity and did postdoctoral work at the 
University of California. Berkeley, in 1962-1963 wAh Professor D. R. Hersch- 
bach. After 3 years at Glasgow University, he moved to Oxford University, 
where he remains today. His research interests are ciasslcal and quantum 
mechanical theories of molecular colllsions and spectroscopy. 
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the individual bond frequencies will vary with energy, 
typically decreasing, for stretching vibrations, as the 
energy increases. This means that highly excited bonds 
will have a different natural frequency ad from one that 
is unexcited. The coupling between them will therefore 
be effectively quenched if this anharmonic detuning is 
large and the interbond coupling is relatively weak. 
Classical studies on a realistic potential function con- 
firm that one can observe a permanent imbalance be- 
tween the two local bond excitation states of HzO for 
e ~ a m p l e . ~  More detailed analysis of this classical sit- 
uation may be found in papers by Lawton and Child,5 
Jaff6 and Brumer,6 and Sibert et We note here two 
important observations. First, that the conditions of 
large anharmonicity and weak interbond coupling are 
most easily satisfied by the stretching of X-H bonds. 
Second, the two possible distributions of separate 
quanta in the two bonds gives rise to a twofold classical 
local mode degeneracy, with higher degeneracies if the 
number of equivalent bonds is increased. 

The main purpose of this Account is to  outline the 
quantum-mechanical analogue of this picture. One im- 
portant change is that the quantum-mechanical states 
must of course carry the proper symmetry labels for the 
system. Thus the theory is developed in terms of sym- 
metry adapted local mode states, given, in the case of 
two oscillations, by 

(1) J. S. Wong and C. B. Moore in "Frontiers of Chemistry", K. J. 
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